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Courtesy of Dirmeyer 
(personal comm.)

“Subseasonal” (2–4 weeks) and seasonal (3–6 months) forecasts 
are a hot topic in operational forecast centers.

Different Roles of Atmosphere, Land, and 
Ocean in Predictability



Land vs. Seasonal Climate Prediction
• Land memory: important sources of predictability 

– Snow: Douville (2010); Jeong et al. (2013); Orsolini et al. (2013)

– Soil moisture: Koster et al. (2004; 2010; 2011); Hirsch et al. (2013)

– Vegetation: Koster and Walker (2015); William and Torn (2015)

– Groundwater: Jiang et al. (2009)

Example: snow in the climate system

However, a lack of high-quality global land state datasets 
has been limiting skill of climate prediction.



Importance of snow      Cryosphere

cryosphere

IPCC, 2018

9

In midwinter, snow covers approximately 49% of the 

land surface in the Northern Hemisphere (NH)



Importance of snow      High albedo
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https://www.tes.com/lessons/N_4TXBTntT9ARw/albedo-high-quality

cool the planet

https://www.tes.com/lessons/N_4TXBTntT9ARw/albedo-high-quality


Importance of snow      Fresh water

(annual snowfall)/(annual runoff)

Barnett, et al., 2005, Nature
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75%the water supply of 

the Western U.S.



Land Skill Depends on Rain Gauge Density
Koster et al. (2011, JHM; GLACE-2)
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(upper limit)

Caveat
 Global land DA methodologies 

remain to be developed and refined;
 No land DA in state-of-the-art 

operational forecasting systems such 
as the NMME



Land Data Assimilation

– Began in early 1990s; much later than atmospheric 

and oceanic data assimilation

– CAHMDA workshops have been important to push 

the research forward. 
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6th International Workshop on Catchment Hydrological Modeling and 
Data Assimilation (CAHMDA VI)

3rd International Workshop on Data Assimilation for Operational 
Hydrology and Water Management of the Hydrologic Ensemble 

Prediction Experiment (HEPEX-DAFOH III) 
Austin, TX, USA 8-12 Sept, 2014 



Satellite Remote 
Sensing

(TB, SCF, TWS, …)

Land Surface Model
(state, fluxes, parameters)

(Offline) Observed Atmospheric 
Forcing (P, T, Rad, q, u, v, …)

Land  Products
(snow, soil moisture, …)

Climate Prediction
(30–180 days; S2S)

Land Data Assimilation in a Nutshell

Hydrological
Prediction

Environmental
Prediction

Crop Yields
Prediction



Highly relevant to hydrology



Soil Moisture
SWE, Ice, Rainfall

Snow Cover
Vegetation

Radiation
Aqua: 

MODIS, 

AMSR-E

GRACE

GRACE provides 
changes in total 
water storage, 
which are 
dominated by 
SWE at high 
latitudes and 
altitudes, but at 
very coarse 
resolution

MODIS provides 
high resolution 
snow cover data 
but not SWE; 
AMSR-E
provides SWE 
data but with 
significant errors 
where snow is 
deep or wet

Terra: 

MODIS

Rodell, 2011

Complementary Information from Different Satellites



Available satellite observations of snow
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http://landweb.nascom.nasa.gov/animation/

Daily MODIS snow cover observation

Monthly GRACE terrestrial water storage observation

ftp://podaac-
ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/
animation/

http://landweb.nascom.nasa.gov/animation/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/animation/


3+ decades of efforts in developing LSMs
• BATS, Bucket, 

CABLE, CLM, CoLM, 
ECHAM,
FUN,
IAP94, ISBA,
JULES,
LSM,
Noah, Noah-MP,
SiB, SSiB, 
PLACE, 
VIC, 
…    

• Models are becoming more and more complex

• PILPS and other land MIPs

• Benchmarking
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A famous quote on modeling

Essentially, all models are wrong, but some are useful.

George E. P. Box (18 October 1919 – 28 March 2013), 
statistician, quality control, time-series analysis, design of 
experiments, and Bayesian inference; "one of the great 
statistical minds of the 20th century".



Grand Objectives

• Develop a multi-mission, multi-platform, multi-
source, and multi-scale land data assimilation 
system combining latest developments in both 
observations and models

• Produce mutually consistent long-term earth 
system data records

• Improve subseasonal to seasonal (S2S) climate and 
hydrological predictions
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Methodology in this talk

• Why CLM?

• Why DART?
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Community Land Model version 4

• Evolved from CLM3.5 (released in 2008). CLM3.5 improves over 
CLM3 (released in 2004)
 Surface runoff (Yang and Niu, 2003; Niu, Yang et al., 2005)
 Groundwater (Niu, Yang, et al., 2007)
 Frozen soil (Niu and Yang, 2006)
 Canopy integration, canopy interception scaling, and pft-dependency of the soil 

stress function

• CLM4 (released in 2010) improves over CLM3.5
 Updated hydrology and ground evaporation
 New density-based snow cover fraction (Niu and Yang, 2007), snow burial fraction, 

snow compaction
 Improved permafrost scheme: organic soils, 50-m depth (5 bedrock layers)
 Conserving global energy by separating river discharge into liquid and ice water 

streams 

Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin, 2008-2013)



Parameterization of Snow Cover 
Fraction (SCF) in CLM4
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Niu and Yang (2007): function of snow depth, land cover, snow 
density, and watershed property 

MODIS GRACE



Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin, 2008-2013)
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• Models are not perfect. 

• Observations have gaps.

Data Assimilation Research 
Testbed (DART)

CLM4-DART: 
Zhang et al., JGR, 2014;
Zhang and Yang, JGR, 2016;
Zhao et al., JHM, 2016
Kwon et al., 2016, 2017

Multi-models, multiple data 
assimilation schemes, fine-
resolution, and long-term 
products

Finding Truth is like playing DART

• Traditional data assimilation codes are hard-
wired in geophysical models  hindering wide 

applications.
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• http://www.image.ucar.edu/DAReS/DART

• developed and maintained by Jeff Anderson’s group at NCAR

• linked to atmospheric models (WRF, CAM) and oceanic models

• linked to CLM4 (UT and NCAR collaboration)

• EAKF (Anderson et al. 2009 BAMS) is used in this study.

Data Assimilation Research Testbed (DART)



Assimilation uses 80 

members of 2o  FV CAM 

forced by a single ocean 

(Hadley+ NCEP-OI2)  

and produces a very   

competitive reanalysis.

O(1 million) 

atmo. obs 

are 

assimilated 

every day.

500 hPa GPH

Feb 17 2003

Contours

5200m:5700m by 100

1998-2010

4x daily

is free and available. 

Contact 

dart@ucar.edu

Atmospheric Reanalysis

JSG – April 2012 pg 28



EAKF in DART (Anderson et al. 2009 BAMS)

• How CLM states get updated (take 

GRACE assimilation as an example)?

– First, an ensemble of prior observations is 

computed with forward operator

• TWS=H2OCAN+H2OSOI+WA+H2OSO

– Second, observation increments are first 

computed following Bayes theorem given 

the prior distribution (TWS ensemble mean 

and variance) and observation likelihood 

(GRACE TWS mean and error variance)

– Third, increments for each component of 

the prior state vector (H2OCAN, H2OSOI, 

WA, and H2OSO) are individually computed 

from observation increments by linear 

regression (may have problem when 

forward operator is highly non-linear, e.g. 

for AMSR-E TB assimilation). 

𝑊𝐴𝑖𝑛𝑐 = TWS𝑖𝑛𝑐 ∙
𝑐𝑜𝑣 𝑊𝐴𝑝𝑟𝑖𝑜𝑟,𝑇𝑊𝑆𝑝𝑟𝑖𝑜𝑟

𝑣𝑎𝑟 𝑇𝑊𝑆𝑝𝑟𝑖𝑜𝑟
,   

𝑐𝑜𝑣 𝑊𝐴𝑝𝑟𝑖𝑜𝑟 , 𝑇𝑊𝑆𝑝𝑟𝑖𝑜𝑟 =
1

𝑁𝑒𝑛𝑠−1
σ𝑖=1
𝑁𝑒𝑛𝑠 𝑊𝐴𝑝𝑟𝑖𝑜𝑟,𝑖 −𝑊𝐴𝑝𝑟𝑖𝑜𝑟 𝑇𝑊𝑆𝑝𝑟𝑖𝑜𝑟,𝑖 − 𝑇𝑊𝑆𝑝𝑟𝑖𝑜𝑟
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Zhang et al. (2014; 2016); Kwon et al. (2015; 2016); Zhao et al. (2016; 2018)

Data Assimilation Research Testbed (DART)
+ Community Land Model (CLM4) 



 Coupled CLM4–RTM–DART system (Kwon et al., 2015, 2016, 2017)

Data assimilation of snow microwave brightness temperature (TB) 
observations, i.e., radiance assimilation (RA)

20



Methodology Development

Our global multi-sensor multi-variate land DA system:
– improves SCF and SWE estimates by assimilating MODIS SCF 

for unsaturated snow cover  areas (0<SCF≤1) (Zhang et al. 
2014, JGR; Zhang and Yang, 2016, JGR); 

– improves SWE estimates by assimilating AMSR-E TB (18.7 
and 23.8 GHz) for nearly saturated snow cover areas 
(SCF≥0.5) (Kwon et al., 2015; Kwon et al. 2016, JHM);

– improves soil moisture estimates by assimilating AMSR-E TB 
(6.9 or 10.7 GHz) over snow free (SCF=0) and frozen-soil 
free (Tsoil>0 °C) areas (Zhao et al. 2016, JHM); 

– improves snow, soil moisture, and groundwater estimates 
by assimilating GRACE TWS. (Zhang and Yang, 2016, JGR; 
Zhao and Yang, 2018, RSE)



Ensemble of 

CLM states 

and parameters

elseif (SCF=0 

and Tsoil>0 °C)

Vegetated soil RTM => 

TBest (6.9 or 10.7 GHz) 

EAKF update CLM soil/snow/groundwater states and 

model parameters
CLM restart files

Advance CLM 

(t→t+1)

if (0<SCF≤1)

if (SCF≥0.5)

AMSR-E TB assimilation

MODIS SCF assimilation

DART/CAM4 reanalysis and perturbed model parameters

Snow RTM => 

TBest (18.7 and 23.8 GHz) 

CLM simulated SCFest

CLM simulated TWSest GRACE TWS assimilation

Multi-Sensor Land DA Prototype

Research Questions:
• What are the relative contributions of different sensors? 

• Can joint assimilation of multi-sensor observations 
improve the DA performance?

Zhao and Yang (2018, RSE)



Eight Data Assimilation Experiments

Cases MOD GRA ASO ASN

OL Open-loop, no DA

DA_1_GRA ×

DA_2_MOD_GRA × ×

DA_3_MOD_ASO × ×

DA_4_MOD_ASN × ×

DA_5_MOD_AMR × × ×

DA_6_MOD_AMR_GRA × × × ×

DA_7_MOD_ASO_GRA × × ×

DA_8_MOD_ASN_GRA × × ×

Zhao and Yang (2018; Remote Sensing of Environment)



Zhao and Yang (2018; Remote Sensing of Environment)

Eight DA Experiments: Spatial Correlation

Soil moisture 
(with ESA)

Snow depth 
(with CMC)

Spatial correlation:



Zhao and Yang (2018; Remote Sensing of Environment)

Eight DA Experiments: Snow Depth

RMSE_diff = 
OL – DA 

Red colors: 
improvements

GRACE only;
High latitude +

GRACE & MODIS;
Mid-latitude +

MODIS & ASO
Mid- & high-latitude

MODIS & ASN
High-latitude

MODIS & ASO & ASN
Mid & high-latitude

MODIS & ASO & ASN & GRACE
Mid and high-latitude ++



Zhao and Yang (2018; Remote Sensing of Environment)

Eight DA Experiments: Soil Moisture

RMSE_diff = 
OL – DA 

Positive values: 
improvements



Satellite Remote Sensing 
(e.g. TB, SCF, TWS)

Land Surface Model
(state, fluxes, parameters)

(Offline) Observed Atmospheric 
Forcing (P, T, Rad, q, u, v, …)

Land  Products
(snow, soil moisture, …)

Climate Prediction
(30–180 days; S2S)

Land DA in Seasonal Climate Prediction

Hydrological
Prediction

Environmental
Prediction

Crop Yields
Prediction



Zhang et al. (2014; 2016); Kwon et al. (2015; 2016); Zhao et al. (2016; 2018)

Data Assimilation Research Testbed (DART)
+ Community Land Model (CLM4) 

Research Questions
o Can snow DA help with seasonal climate prediction?

o If so, are there spatiotemporal patterns?

o What is the added value of GRACE DA on top of MODIS DA?



• 504 ensemble-based “hindcast” simulations

– Using the Community Earth System Model (CESM 1.2.1);

– “AMIP” type runs: coupled CLM4-CAM5 experiments;

• 2003 to 2009 (7 years): Initialized on Jan 1, Feb 1, Mar 1
– 3 suites x 7 years x 3 start dates x 8 ensemble members

Experimental Design

Lin et al. (2016; GRL)



DA-Induced Changes: Initial Snow Conditions

Lin et al. (2016; GRL)

Snow depth

MOD – OL GRAMOD – OL 

GRACE: 
additional 
snow mass 
information

o OL mostly 
overestimates 
snow

o DA alleviates 
this problem by 
reducing snow 
over most land 
areas

Snow Cover Fraction



2-m Temperature Prediction

Lin et al. (2016; GRL)

cRMSE

Percentage 
change

5 – 25% local 
improvements:

o Tibetan Plateau

o High-latitude 
(e.g. Siberia)



Interesting Latitudinal Pattern

Lin et al. (2016; GRL)

Lower latitude: 
immediate 
improvements;

Higher latitude: 
improvements 
appear later in 
warmer months



Why Such Latitudinal Patterns?

Lin et al. (2016; GRL)

• Snow cover fraction (%)

 Absorbed solar (w m-2)

 Snowmelt heat flux (w m-2)

 T2m (K)

This is related to the regional differences in the snow-
atmosphere coupling strengths.



Rebound in Predictability

Lin et al. (2016; GRL)

• Higher-latitude such as the Siberia
– Improved temperature prediction appears later in warmer months

– Due to strengthened snow-atmosphere coupling



• Affects more than 60% of the world’s population
• Accurate seasonal forecasts are extremely important
• Tropical oceans as the primary source of predictability
• Past studies focus on ocean data assimilation (DA) 
• Skill of land-oriented DA has not been demonstrated.

Asian Monsoon



Seasonal Monsoon Rainfall Prediction

(29 June 2014; Source: http://naturedocumentaries.org/12787/climatic-
dynamics-monsoons-nasa-svs-2016/)

• Key drivers of Asian monsoon: the land–sea thermal contrast 
between the Eurasian landmass and the oceans
– TP and Siberian snow are two important players

Warmer

Research Question:

Can snow DA improve Asian monsoon rainfall seasonal forecast?

• CLM4-CAM5 experiments initialized on 1 March of 2003 to 2009

• Model runs extended to the end of August



DA-induced Changes in Snow Initializations

Lin et al. (2019)

a

b



DA-induced Thermal Forcing and Impacts on 
Monsoon Circulation

Lin et al. (2019)



Webster and Yang Monsoon Index

• U winds have anti-
phase on 850 hPa and 
200 hPa in summer. 

• WYM Index:
U850 (40E–110E, EQ –
20N) – U200 (40E–110E, 
EQ–20N)

http://apdrc.soest.hawaii.edu/projects/monsoon/definition.html

Webster and Yang (1992)



DA-induced Thermal Forcing and Impacts on 
Monsoon Circulation

Lin et al. (2019)



Seasonal Asian Monsoon Prediction

Lin et al. (2019)

r2

against 
GPCP

MAM

AMJ

MJJ

JJA

a

b

Robust improvement 

in India monsoon 

region: 

o Compared with five 

precip. datasets;

o Using both r2 and 

RMSE skill metrics (21 

samples);

o Dots: 95% confidence 

level with bootstrap 

for 1,000 times;



Regional Land DA vs. Seasonal Prediction

Lin et al. (2019)

High-latitude Eurasian snow 
+ GRACE DA:

Key to long-lead (3-month) 
Indian monsoon prediction



DA-induced Changes in Temperature, 
Circulation, and Precipitation

Lin et al. (2019)



River Basins Originating from the Tibetan Plateau 

RMSE_diff = DA – OL
• Basin-averaged runoff 

against ERA-Land runoff;

• Negative RMSE_diff: 
improved runoff forecast

MOD GRAMOD



DA products reduce 
SWE biases, but 
have a smaller 
spatial correlation 
coefficient. 

DA products 
improve seasonal 
amplitudes and 
timing.

Evaluating Different Datasets of Snow Water Equivalent (SWE)



Selected global large river basins

Yukon Yenisei

Mississippi 
Danube 

Amazon Zaire
(Congo)



Cases
MODIS 

SCF

GRACE 

TWS

AMSR-E TB

(6.9/10.7 GHz)

OL Open-loop, no DA

DA_1_GRA x

DA_2_MOD_GRA x x

DA_7_MOD_ASO_GRA x x x

GRACE	TWS

SWE	and	snow	
thickness

Liquid	soil	water	
and	soil	ice

Water	in	aquifer	
(WA)	and	total	

water	storage	(WT)

AMSR-E	TB	at
lower	frequencies

Liquid	soil	water

AMSR-E	TB	at
higher	frequencies

SWE,	snow	thickness,	
and	snow	temperature

Liquid	soil	water	
and	soil	

temperature

SWE	and	snow	
thickness

MODIS	SCF

12

GRACE	TWS

SWE	and	snow	
thickness

Liquid	soil	water	
and	soil	ice

Water	in	aquifer	
(WA)	and	total	

water	storage	(WT)

AMSR-E	TB	at
lower	frequencies

Liquid	soil	water

AMSR-E	TB	at
higher	frequencies

SWE,	snow	thickness,	
and	snow	temperature

Liquid	soil	water	
and	soil	

temperature

SWE	and	snow	
thickness

MODIS	SCF

12

GRACE	TWS

SWE	and	snow	
thickness

Liquid	soil	water	
and	soil	ice

Water	in	aquifer	
(WA)	and	total	

water	storage	(WT)

AMSR-E	TB	at
lower	frequencies

Liquid	soil	water

AMSR-E	TB	at
higher	frequencies

SWE,	snow	thickness,	
and	snow	temperature

Liquid	soil	water	
and	soil	

temperature

SWE	and	snow	
thickness

MODIS	SCF

12

Aqua: MODIS, AMSR-E
GRACE

Terra: MODIS

Rodell, 2011 

Fig 1. Complementary satellite observations. 



Improved estimation of monthly streamflow



Summary

 Developed a global land DA system capable of assimilating 

MODIS, GRACE, and AMSR-E observations (40-member multi-year 

2003 –2009) 

o Providing a robust soil moisture and snow estimation at the global scale;

 Different sensors offer complementary information

o MODIS SCF leads to marginal improvements in the snow estimation at 

mid- and high-latitude, where GRACE offers unique contribution;

o However, more sensors do not necessarily lead to optimal updates 

(uncertainties with observations)

 Land DA holds promise for improving seasonal hydroclimate 

prediction: temperature, rainfall, runoff

o Mid- to high-latitude Eurasia GRACE DA on March 1 improves summer 

monsoon forecast skill



Future Plans

 Potential collaborative efforts with NCAR and NASA:

1) Land DA with CLM5, Noah-MP, or the future unified NCAR Land 

Model;

2) Extended CAM/DART forcing from 2010 to 2017;

3) Assimilation of other satellite datasets such as SMAP, SWOT;

4) DA as a tool to assess the groundwater, snow, and vegetation 

representations in the model

 Other applications with land DA:

1) DA with fully coupled earth system;

2) DA for river flow modeling;

3) DA with decision support system for early alert & warning
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CLM3.0, 3.5, 4.0, 4.5 (5.0)
• CLM3.0  3.5

 Surface runoff (Niu, Yang et al., 2005)
 Groundwater (Niu, Yang, et al., 2007)
 Frozen soil (Niu and Yang, 2006)
 Canopy integration, canopy interception scaling, and pft-dependency of the 

soil stress function (Lawrence et al., 2007)
• CLM3.5  4.0, 4.5

 Prognostic in carbon and nitrogen (CN) as well as vegetation phenology; the 
dynamic global vegetation model is merged with CN

 Transient landcover and land use change capability
 Urban canopy (Oleson et al.)
 BVOC component (MEGAN2) (Guenther et al.)
 Dust emissions
 Updated hydrology and ground evaporation
 New (density-based and later revised) snow cover fraction, snow burial 

fraction, snow compaction
 Improved permafrost scheme: organic soils, 50-m depth (5 bedrock layers)
 Conserving global energy by separating river discharge into liquid and ice 

water streams 

Co-Chairs: David Lawrence (NCAR), Zong-Liang Yang (Univ of Texas at Austin, 2008-2013)



Noah-MP is unique among LSMs

• A new paradigm in land-surface, environmental, and 
hydrological modeling (Clark et al., 2007; 2011)

• Next-generation LSM for NOAA CFS and GFS

• Already included in WRF

• In a broad sense,
– Multi-parameterization ≡ Multi-physics ≡ Multi-hypothesis

• A modular & powerful framework for
– Diagnosing differences

– Identifying structural errors

– Improving understanding

– Enhancing data/model fusion and data assimilation

– Facilitating ensemble forecasts and uncertainty quantification

6
3



Noah-MP

6
4



Noah-MP
1. Leaf area index (prescribed; predicted)
2. Turbulent transfer (Noah; NCAR LSM)
3. Soil moisture stress factor for transpiration (Noah; SSiB; CLM)
4. Canopy stomatal resistance (Jarvis; Ball-Berry)
5. Snow surface albedo (BATS; CLASS)
6. Frozen soil permeability (Noah; Niu and Yang, 2006)
7. Supercooled liquid water (Noah; Niu and Yang, 2006)
8. Radiation transfer:

Modified two-stream: Gap = F (3D structure; solar zenith angle; ...) ≤ 
1-GVF

Two-stream applied to the entire grid cell: Gap = 0
Two-stream applied to fractional vegetated area: Gap = 1-GVF

9. Partitioning of precipitation to snowfall and rainfall (CLM; Noah)
10. Runoff and groundwater:

TOPMODEL with groundwater
TOPMODEL with an equilibrium water table (Chen&Kumar,2001)
Original Noah scheme
BATS surface runoff and free drainage

More to be added Niu et al. (2011)

Collaborators: Yang, Niu (UT), Chen (NCAR), Ek/Mitchell (NCEP/NOAA), and others
65



Maximum # of Combinations 
1. Leaf area index (prescribed; predicted) 2
2. Turbulent transfer (Noah; NCAR LSM) 2
3. Soil moisture stress factor for transp. (Noah; SSiB; CLM) 3
4. Canopy stomatal resistance (Jarvis; Ball-Berry) 2
5. Snow surface albedo (BATS; CLASS) 2
6. Frozen soil permeability (Noah; Niu and Yang, 2006) 2
7. Supercooled liquid water (Noah; Niu and Yang, 2006) 2
8. Radiation transfer: 3

Modified two-stream: Gap = F (3D structure; solar zenith 
angle; ...) ≤ 1-GVF

Two-stream applied to the entire grid cell: Gap = 0
Two-stream applied to fractional vegetated area: Gap = 1-GVF

9. Partitioning of precipitation to snow- and rainfall (CLM; Noah) 2
10. Runoff and groundwater: 4

TOPMODEL with groundwater
TOPMODEL with an equilibrium water table (Chen&Kumar,2001)
Original Noah scheme
BATS surface runoff and free drainage

2x2x3x2x2x2x2x3x2x4 = 4608 combinations

Process understanding, probabilistic forecasting, quantifying uncertainties 66



Integrated Hydrological Framework

67

Regional Studies: Texas [David+ 2011; David+ 2013b]

Mississippi River [Cai+ 2014; David+ 2013a; Tavakoly+ 2017]

Global 

Meteorology
(NLDAS/GLDAS)

e.g. precipitation, 

temperature, 

wind, radiation

Hydraulics
(RAPID)

Q

Streamflow

R

Runoff

Hydrology
(Noah-MP)



Development Team: NCAR, NOAA/OWP/NWC, USGS, UT-Austin, CUAHSI, 

Universities

Sponsor: NOAA Office of Water Prediction

System become fully operational beginning Aug. 16, 2016

• Real-time verification since June 2016 

• Multiple operational products created by NOAA, academia, private sector

The NOAA National Water Model

http://water.noaa.gov/about/nwm



Seamless Simulation of Nation’s Hydrologic System

Animation created by:
F. Salas, NOAA/NWC

UT-Austin contributes to developing the 
National Water Model, which predicts flows 
for 2.67 million river reaches.



River Discharge Modeling with Vector-Based Routing

W. Wu, Z.-L. Yang, P. Lin (2017, AGU): A 37-year historical global simulation to 
study floods and droughts

25 km GLDAS + Hydro1K

Texas: Harvey

1/8° Noah-MP + 
15 sec HydroSHEDS



Big Data Challenges in the Geoscientific Context

71(Reichstein et al. Nature, 2019)

Deep learning and process understanding for

data-driven Earth system science



Key Points
• Land state variables (soil moisture, snow mass, groundwater, vegetation 

phenology) have value in predicting
– Climate
– Runoff and streamflow
– Extreme events (floods and droughts)

• But high-quality land state datasets have been lacking
• Therefore, our collaborative efforts have been made in

– Developing a multivariate global land data assimilation framework
– Quantifying uncertainties
– Producing high-quality datasets 
– Improving predictions (e.g., intraseasonal to seasonal climate prediction) 

• Future directions
– Linking land DA with multi-physics and parameter estimation
– DA with coupled land–atmosphere system
– DA with fully coupled earth system
– DA with decision support system for early alert & warning 
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