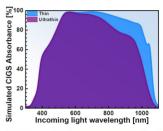
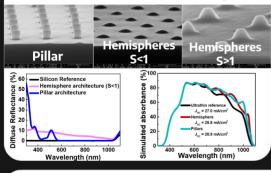


Low-cost nanofabrication for light management architectures in ultrathin solar cells

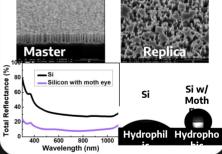

Enzo Ribeiro#, MSc Student, enzo.ribeiro@inl.int

Rita Alexandre#; António Oliveira; Tomás Lopes; André Violas; Jennifer Teixeira; Paulo Fernandes; Pedro Salomé, INL. #Authors contributed equally

Motivation


Cu(In,Ga)Se₂ (CIGS) is a thin film technology with a solid record efficiency of 23.35 %. However, it uses scarce materials (In and Ga). Ultrathin absorbers allow for material savings and improve production costs. Nevertheless, a decrease of the absorber thickness leads to incomplete absorption.

Light management strategies are of utmost importance to allow CIGS technology market expansion. Nanoimprint Lithography (NIL) has emerged as a promising low-cost candidate to fabricate sub-wavelength nanostructures with both ultra high resolution and high throughput.



NIL Process Flow ASL coat ASL coat Etch IPS* OStamp ASL: Anti Sticking Laver (a) - Ormoprime 08®

Metasurfaces for scattering

Moth Eye for anti-reflection

Summary

The light scattering caused by the nanopillars and hemispheres architectures is proven by the increase in diffuse reflectance of the metasurfaces, leading to a predicted optical path length enhancement. The moth eye structure exhibited a broadband decrease in total reflectance. This architecture also presented hydrophobic properties, that can be promising for Building Integrated Photovoltaic (BIPV) applications.

