

Modeling diffusion in ceramic coatings

Nicolas Molina, Ph.D. student, namolina@utexas.edu Gregory J Rodin, Kirill R Rebrov, Logan J Kirsch, Filippo Mangolini

Motivation: Difficult-to-machine materials

- New wear-resistant and lubricating coatings are needed to machine difficult-tomachine alloys (e.g., Ti alloys used in aerospace and automotive industries) under dry conditions.
- Through the collaboration between UT-Austin and the University of Coimbra, a self-lubricating TiSiN-Ag coating was evaluated as candidate coating for machining
- TiSiN-Ag coating combines high hardness with the ability of releasing of a lubricious Ag phase able to reduce cutting forces and contact temperatures.

Research question What is the rate of Ag out-diffusion from TiSiN-Aa?

Methodology: Accumulation of mass

- To quantify the diffusion of Aq through TiSiN, an oxidation barrier coating, Al₂O₃, is first deposited on TiSiN since it provides two advantages:
- I) Avoid the oxidation of TiSiN upon long annealing times in oxidizing environments.
- II) Quantify the mass of Ag accumulated in Al₂O₃ through energy-dispersive X-ray spectroscopy (EDS) measurements.

Diffusion modeling

• The accumulated mass of Ag in Al₂O₃ can be modeled by solving an initial boundary value problem (IBVP).

Experiments

• Aq/TiSiN/Al₂O₃ samples were annealed at 900°C for 5 hours and the average accumulated Ag in Al_2O_3 was quantified by EDS:

Future work: Parametric fitting

- The diffusivities of Ag into TiSiN and Al₂O₃ can be estimated by means of a parametric fitting of the experimental curve of Ag accumulated in Al₂O₃.
- The use of oxidation barrier coatings is particularly suitiable for studying the diffusion of metals in oxidizable ceramics (e.g., carbides and nitrides).

