

Optimizing bimetallic alloy catalysts for the cost-efficient reduction of bromate

Jacob P. Troutman, PhD candidate, ja.troutman@utexas.edu

J. Restivo^a, H. Ha^b, Z. Bajalan^b, C.E. Brady^b, C. Vigil-Hernandez^b, J.M.B. Costa^a, J.R. Barbosa^a, C.A. Orge^a, M.F.R. Pereira^a, G. Henkelman^b, S.M. Humphrey^b, C.J. Werth^b, O.S.G.P. Soares^a

Alloy Nanoparticle Characterization

Pure palladium nanoparticles (PdNPs), palladium– copper nanoparticles (PdCuNPS) and palladium–silver nanoparticles (PdAgNPs) were synthesized by a microwave-assisted polyol method and characterized by a number of techniques. We confirmed that the particles were alloys of the different metals by measuring the lattice d-spacing of the nanoparticles through powder X-ray diffraction (filled circles and squares in top plot) and scanning transmission electron microscopy (open circles and squares in top plot; lower left), as well as energy dispersive spectroscopy (lower right).

Bromate removal activity

Alloy nanoparticle catalysts with compositions of Pd₅₀Cu₅₀ and Pd₇₅Ag₂₅ demonstrate significant activity-per-cost improvement versus pure PdNP catalysts (left). Catalysts synthesized using traditional techniques display a similar trend for BrO₃⁻ reduction activity (right).

Bromate binding energy

Density functional theory (DFT) calculations reveal that alloys create unique surface sites, called ensembles, that change the strength with which BrO₃⁻ binds to the metal surface.The catalyst activity is related to this binding energy. For PdCuNPs (see right), a 50:50 alloy of Pd – Cu most strongly binds BrO₃⁻, which results in the optimal BrO₃⁻ reduction activity displayed by the Pd₅₀Cu₅₀NPs.

FCT Pure a Connecta TEXAS

Affiliations

UTAustin Portugal

^aLaboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Porto, Portugal ^bDepartment of Chemistry, the University of Texas at Austin, Austin, TX, USA ^cDepartment of Civil, Architectural, and Environmental Engineering, the University of Texas at Austin, Austin, TX, USA

ciimar

