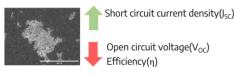
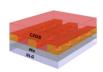


Plasmonic rear architecture as an efficient light management strategy for ultrathin solar cells


A.J.N.Oliveira, PhD Candidate, INL, antonio.oliveira@inl.int

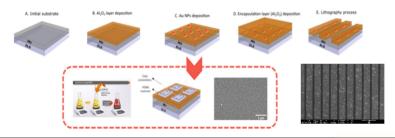
D. Ramos, R. Alexandre, E. Ribeiro, T. S. Lopes, A. Violas, J. P. Teixeira, P. A. Fernandes, P. M. P. Salomé, INL.

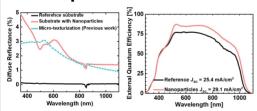
Introduction


The Cu(In,Ga)Se₂ solar cells market expansion requires a reduction in the production costs and a performance increase. An ultrathin approach, satisfies the low-cost requirement. However, a thinner absorber leads to incomplete light absorption. Light scattering schemes are needed to compensate this optical loss.

Previous Work - Micro-scale Texturing

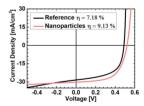
A. J. N. Oliveira, et al., Sol. RRL, 4, 2020, 2000310


This work - Plasmonic Substrate


Individualized nanoparticles to promote an optical enhancement without electrical degradation

Plasmonic substrate development

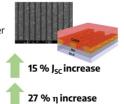
The plasmonic rear architecture is developed through a process that combines microfluidics and an industry-compatible nanoimprint lithography.



Optical Performance

Light Scattering from the Plasmonic rear substrate leads to an optical path length enhancement in the absorber, with an 15 % (rel) J_{SC} increase.

J-V Measurements



The developed rear architecture allowed for an improved optoelectronic performance with a 27 % (rel) η enhancement.

Conclusions

Individualized Gold Nanoparticles with diameter of 100 nm enabled an improved J_{SC} without electrical degradation in an ultrathin cell.

Optical performance may still be improved by optimization of dielectric encapsulation layer and NPs surface coverage.

