

Optimization of a spray pyrolysis process for the preparation of fluorine doped tin oxide substrates

Diana Mesquita, Msc student, diana.mesquita@inl.int

M. Monteiro, X. L. Pinheiro, A. J. N. Oliveira, K. Oliveira, A. Vilanova, P. A. Fernandes, F. Cerqueira & P. M. P. Salomé

Introduction

- **Transparent conductive oxides** (TCOs) are used in many applications, namely photovoltaic (PV) devices.
- Fluorine-doped tin oxide (FTO) is the most promising alternative to ITO presenting better thermal and chemical stability.
- The main objective of this work was to optimize the deposition of FTO thin films by spray pyrolysis following a DoE methodology.

Optimization of the optoelectronic properties of FTO thin films

• The DoE optimization of FTO depositions on soda-lime glass by spray pyrolysis focused on the two experimental variables that presented the greatest influence in the figure-of-merit (FoM) of the resulting films, *i.e.* the volume of sprayed solution and the [F]/[Sn] ratio in the precursor.

_			
		Level	
Fact	1	0	1
or	-1	U	'
X ₁	42	54	66
X ₂	0.3	0.4	0.5
		-1	Fact -1 0

In-house *vs.* commercial FTO

Top view and cross section SEM images of in-house FTO.

Optical properties

Conclusions

- FTO-SLG substrates with tailored properties can be prepared by low-cost spray pyrolysis, presenting a high FoM.
- The improved FoM was further assessed with the fabrication of dye-sensitized and perovskite solar cells (DSSCs and PSCs) using commercial and in-house substrates; the efficiency of DSSCs and PSCs was improved by 8.7 % and 4.4 % (relative).

