(Closed) GEMIS – Graphene-enhanced Electro-Magnetic interference Shielding

Summary

Electromagnetic interference (EMI) is considered a potential and major source of operating problems to electronic devices, as well as a cause of its performance and lifetime reduction, especially in a world where electronic devices are increasingly ubiquitous. GEMIS aims to develop an advanced technological solution based on graphene liquid dispersions to address the issue of electromagnetic interference.

Current shielding materials used to protect electronic devices from EMI are based on heavy, brittle and expensive metals, while the major EMI applications have a huge demand for flexible, additive, light, and inexpensive materials. This is of crucial importance, for instance, for several vehicles industries, from hybrid and electrical cars to airplanes, where weight reduction is imperative to increase autonomy and reduce carbon footprint.

Graphene and its related materials are considered the most promising and effective candidates for effective EMI shielding because of their excellent electrical properties, extremely high specific surface area, and unprecedented strength to weight ratio.

Electronics (IT and sensors), telecommunications (space), aviation, naval and the Internet of Things are several sectors that will benefit from the advanced technological solution provided by the project.

Expected Outcomes

  • A universal formulation for a liquid dispersion of graphene materials with highly effective EMI shielding;
  • The consequent production of two EMI shielding composites based on polymers and epoxies;
  • Design and fabrication of a custom-made equipment to specifically apply the developed EMI shielding solutions on electric wires to be used in the automotive industry.
Start Date – End Date: June 1, 2020 – May 31, 2023
Scientific Area: Nanotechnologies
Keywords: Graphene, EMI, shielding, coatings, nanomaterial
Lead Beneficiary (PT): Graphenest, S.A.
Co-beneficiaries:
Laboratório Ibérico Internacional de Nanotecnologia (LIN)
Universidade do Minho
PIs at UT Austin: Deji Akinwande (Cockrell School of Engineering, Department of Electrical and Computer Engineering, UT Austin)
Brian Korgel (Cockrell School of Engineering, McKetta Department of Chemical Engineering, UT Austin)
Total Eligible Investment (PT): 1 171 622,84 EUR
Total Eligible Investment (US): 720 000,00 USD
Funding Sources Distribution:  

Papers and Communications

  • Santos, D., Baptista, R. M. F., Handa, A., Almeida, B., Rodrigues, P. V., Castro, C., Machado, A., Rodrigues, M. J. L. F., Belsley, M., & de Matos Gomes, E. (2023). Nanostructured Electrospun Fibers with Self-Assembled Cyclo-L-Tryptophan-L-Tyrosine Dipeptide as Piezoelectric Materials and Optical Second Harmonic Generators. In Materials (Vol. 16, Issue 14, p. 4993). MDPI AG. https://doi.org/10.3390/ma16144993
  • Pinto, R. M. R., Nemala, S. S., Faraji, M., Fernandes, J., Ponte, C., De Bellis, G., Retolaza, A., Vinayakumar, K. B., & Capasso, A. (2023). Material jetting of carbon nano onions for printed electronics. In Nanotechnology (Vol. 34, Issue 36, p. 365710). IOP Publishing. https://doi.org/10.1088/1361-6528/acdad7
  • Ricciardi, B., Mecheri, B., da Silva Freitas, W., Ficca, V. C. A., Placidi, E., Gatto, I., Carbone, A., Capasso, A., & D’Epifanio, A. (2023). Porous Iron‐Nitrogen‐Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). In ChemElectroChem (Vol. 10, Issue 7). Wiley. https://doi.org/10.1002/celc.202201115
  • Dieng, M., Sankar, S., Ni, P., Florea, I., Alpuim, P., Capasso, A., Yassar, A., & Bouanis, F. Z. (2023). Solution-Processed Functionalized Graphene Film Prepared by Vacuum Filtration for Flexible NO2 Sensors. In Sensors (Vol. 23, Issue 4, p. 1831). MDPI AG. https://doi.org/10.3390/s23041831
  • Silva, B. M., Oliveira, J., Rebelo, T., Isfahani, V. B., Rocha-Rodrigues, P., Lekshmi, N., Belo, J. H., Deepak, F. L., Lopes, A. M. L., Araújo, J. P., & Almeida, B. G. (2023). Synthesis, structural and dielectric properties of Ca3Mn2O7 thin films prepared by pulsed laser deposition. In Materials Research Bulletin (Vol. 158, p. 112066). Elsevier BV. https://doi.org/10.1016/j.materresbull.2022.112066
  • Baptista, R. M. F., Moreira, G., Silva, B., Oliveira, J., Almeida, B., Castro, C., Rodrigues, P. V., Machado, A., Belsley, M., & de Matos Gomes, E. (2022). Lead-Free MDABCO-NH4I3 Perovskite Crystals Embedded in Electrospun Nanofibers. In Materials (Vol. 15, Issue 23, p. 8397). MDPI AG. https://doi.org/10.3390/ma15238397
  • Baptista, R. M. F., Silva, B., Oliveira, J., Isfahani, V. B., Almeida, B., Pereira, M. R., Cerca, N., Castro, C., Rodrigues, P. V., Machado, A., Belsley, M., & Gomes, E. de M. (2022). High Piezoelectric Output Voltage from Blue Fluorescent N,N-Dimethyl-4-nitroaniline Nano Crystals in Poly-L-Lactic Acid Electrospun Fibers. In Materials (Vol. 15, Issue 22, p. 7958). MDPI AG. https://doi.org/10.3390/ma15227958
  • Faggio, G., Grillo, R., Lisi, N., Buonocore, F., Chierchia, R., Jung Kim, M., Lee, G.-H., Capasso, A., & Messina, G. (2022). Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy. In Applied Surface Science (Vol. 599, p. 154035). Elsevier BV. https://doi.org/10.1016/j.apsusc.2022.154035
  • Liao, C.-D., Capasso, A., Queirós, T., Domingues, T., Cerqueira, F., Nicoara, N., Borme, J., Freitas, P., & Alpuim, P. (2022). Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production. In Beilstein Journal of Nanotechnology (Vol. 13, pp. 796–806). Beilstein Institut. https://doi.org/10.3762/bjnano.13.70
  • Pinto, R. M. R., Sankar Nemala, S., Faraji, M., Capasso, A., & Vinayakumar, K. B. (2022). Inkjet-Printing of Carbon Nano Onions for Sensor Applications in Flexible Printed Electronics. In 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). IEEE. https://doi.org/10.1109/fleps53764.2022.9781548
  • Fernandes, J., Queirós, T., Rodrigues, J., Nemala, S. S., LaGrow, A. P., Placidi, E., Alpuim, P., Nieder, J. B., & Capasso, A. (2022). Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD. In FlatChem (Vol. 33, p. 100366). Elsevier BV. https://doi.org/10.1016/j.flatc.2022.100366
  • Rodrigues, J., Grzonka, J., Fernandes, J., Santos, J., Bondarchuk, O., Ferreira, P., Alpuim, P., & Capasso, A. (2022). Strain-modulated optical response in 2D MoSe2 made by Na-assisted CVD on glass. In Applied Physics Letters (Vol. 120, Issue 21, p. 213104). AIP Publishing. https://doi.org/10.1063/5.0090034
  • Fernandes, J., Nemala, S. S., De Bellis, G., & Capasso, A. (2022). Green Solvents for the Liquid Phase Exfoliation Production of Graphene: The Promising Case of Cyrene. In Frontiers in Chemistry (Vol. 10). Frontiers Media SA. https://doi.org/10.3389/fchem.2022.878799
  • Buonocore, F., Capasso, A., Celino, M., Lisi, N., & Pulci, O. (2021). Tuning the Electronic Properties of Graphane via Hydroxylation: An Ab Initio Study. In The Journal of Physical Chemistry C (Vol. 125, Issue 29, pp. 16316–16323). American Chemical Society (ACS). https://doi.org/10.1021/acs.jpcc.1c04397
  • Silva, B., Rodrigues, J., Sompalle, B., Liao, C.-D., Nicoara, N., Borme, J., Cerqueira, F., Claro, M., Sadewasser, S., Alpuim, P., & Capasso, A. (2021). Efficient ReSe2 Photodetectors with CVD Single-Crystal Graphene Contacts. In Nanomaterials (Vol. 11, Issue 7, p. 1650). MDPI AG. https://doi.org/10.3390/nano11071650
  • Tkachev, S., Monteiro, M., Santos, J., Placidi, E., Hassine, M. B., Marques, P., Ferreira, P., Alpuim, P., & Capasso, A. (2021). Environmentally Friendly Graphene Inks for Touch Screen Sensors. In Advanced Functional Materials (Vol. 31, Issue 33, p. 2103287). Wiley. https://doi.org/10.1002/adfm.202103287

Co-funded by: