Summary
Title |
Nanomaterials to design new vaccine adjuvants
|
Reference | UTA-EXPL/NPN/0082/2019 |
Scientific Area | Nanotechnologies |
Funding (PT) | 50 000,00 EUR |
Funding (US) | 49 998,00 USD |
Leading Institutions | Instituto de Medicina Molecular João Lobo Antunes (IMM/FM/ULisboa) Department of Biomedical Engineering, Institute for Biomaterials, Drug Delivery and Regenerative Medicine Cockrell School of Engineering, UT Austin |
Participating Institutions | Faculty of Pharmacy Research and Development Association (FARM-ID) |
Duration | 12 months |
Begin date | July 1, 2020 |
End date | June 30, 2021 |
Keywords |
Antibodies, T cells, B cells, Nanoparticles, Immune regulation
|
Although vaccines are among therapies with the greatest impact on health, there is still a need to improve vaccine efficacy among groups with decaying immune function. By advancing the knowledge on reprogramming host immune responses by nanoparticulate systems, the ImmuneNanoVac project will lead to the identification of optimal nanomaterials to improve vaccine efficacy in vulnerable groups.
The protection afforded by vaccination (namely against influenza) is important but still sub-optimal. The exploitation of the results achieved with the development of nanomaterials for cancer immunotherapy, as well as the expertise in germinal center biology will boost vaccine responses through the use of nanoparticles to deliver adjuvants and immunizing antigens.
The ImmuneNanoVac project has the potential to increase vaccine efficacy among individuals that are more susceptible to severe consequences of infection, such as influenza or COVID-19.
Key Outcomes
- Optimal nanomaterials to improve vaccine efficacy in vulnerable groups;
- Research publications;
- Preliminary results to support further grant applications and intellectual property.
Project Team
Luís Graça
ImmuneNanoVac
Nicholas A. Peppas
ImmuneNanoVac
- Other team members in Portugal: Helena Florindo (Co-PI; iMed.ULisboa)